Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Pathog ; 18(12): e1010994, 2022 12.
Artículo en Inglés | MEDLINE | ID: covidwho-2162605

RESUMEN

The emergence of new variants of SARS-CoV-2 necessitates unremitting efforts to discover novel therapeutic monoclonal antibodies (mAbs). Here, we report an extremely potent mAb named P4A2 that can neutralize all the circulating variants of concern (VOCs) with high efficiency, including the highly transmissible Omicron. The crystal structure of the P4A2 Fab:RBD complex revealed that the residues of the RBD that interact with P4A2 are a part of the ACE2-receptor-binding motif and are not mutated in any of the VOCs. The pan coronavirus pseudotyped neutralization assay confirmed that the P4A2 mAb is specific for SARS-CoV-2 and its VOCs. Passive administration of P4A2 to K18-hACE2 transgenic mice conferred protection, both prophylactically and therapeutically, against challenge with VOCs. Overall, our data shows that, the P4A2 mAb has immense therapeutic potential to neutralize the current circulating VOCs. Due to the overlap between the P4A2 epitope and ACE2 binding site on spike-RBD, P4A2 may also be highly effective against a number of future variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/química , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/terapia , Ratones Transgénicos , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
2.
Mol Aspects Med ; 81: 101005, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1562128

RESUMEN

Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.


Asunto(s)
Antivirales , Virus ARN , ARN Polimerasa Dependiente del ARN , Antivirales/uso terapéutico , Humanos , Virus ARN/efectos de los fármacos , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/genética
3.
Int J Biol Macromol ; 168: 272-278, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1065145

RESUMEN

SARS-CoV-2is the causative agent for the ongoing COVID19 pandemic, and this virus belongs to the Coronaviridae family. The nsp14 protein of SARS-CoV-2 houses a 3' to 5' exoribonuclease activity responsible for removing mismatches that arise during genome duplication. A homology model of nsp10-nsp14 complex was used to carry out in silico screening to identify molecules among natural products, or FDA approved drugs that can potentially inhibit the activity of nsp14. This exercise showed that ritonavir might bind to the exoribonuclease active site of the nsp14 protein. A model of the SARS-CoV-2-nsp10-nsp14 complex bound to substrate RNA showed that the ritonavir binding site overlaps with that of the 3' nucleotide of substrate RNA. A comparison of the calculated energies of binding for RNA and ritonavir suggested that the drug may bind to the active site of nsp14 with significant affinity. It is, therefore, possible that ritonavir may prevent association with substrate RNA and thus inhibit the exoribonuclease activity of nsp14. Overall, our computational studies suggest that ritonavir may serve as an effective inhibitor of the nsp14 protein. nsp14 is known to attenuate the inhibitory effect of drugs that function through premature termination of viral genome replication. Hence, ritonavir may potentiate the therapeutic properties of drugs such as remdesivir, favipiravir and ribavirin.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Exorribonucleasas/antagonistas & inhibidores , Ritonavir/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Antivirales/administración & dosificación , Antivirales/química , COVID-19/virología , Dominio Catalítico , Simulación por Computador , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Exorribonucleasas/química , Exorribonucleasas/genética , Genoma Viral/efectos de los fármacos , Humanos , Simulación de Dinámica Molecular , Pandemias , Ritonavir/administración & dosificación , Ritonavir/química , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos
4.
IUBMB Life ; 72(10): 2112-2120, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-720322

RESUMEN

SARS-CoV-2 is the causative agent for the ongoing COVID19 pandemic, and this virus belongs to the Coronaviridae family. Like other members of this family, the virus possesses a positive-sense single-stranded RNA genome. The genome encodes for the nsp12 protein, which houses the RNA-dependent-RNA polymerase (RdRP) activity responsible for the replication of the viral genome. A homology model of nsp12 was prepared using the structure of the SARS nsp12 (6NUR) as a model. The model was used to carry out in silico screening to identify molecules among natural products, or Food and Drug Administration-approved drugs that can potentially inhibit the activity of nsp12. This exercise showed that vitamin B12 (methylcobalamin) may bind to the active site of the nsp12 protein. A model of the nsp12 in complex with substrate RNA and incoming NTP showed that vitamin B12 binding site overlaps with that of the incoming nucleotide. A comparison of the calculated energies of binding for RNA plus NTP and methylcobalamin suggested that the vitamin may bind to the active site of nsp12 with significant affinity. It is, therefore, possible that methylcobalamin binding may prevent association with RNA and NTP and thus inhibit the RdRP activity of nsp12. Overall, our computational studies suggest that methylcobalamin form of vitamin B12 may serve as an effective inhibitor of the nsp12 protein.


Asunto(s)
Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Genoma Viral , SARS-CoV-2/enzimología , Vitamina B 12/farmacología , Secuencia de Aminoácidos , Antivirales/química , Sitios de Unión , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Ensayos Analíticos de Alto Rendimiento , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Medicamentos bajo Prescripción/química , Medicamentos bajo Prescripción/farmacología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica , Interfaz Usuario-Computador , Vitamina B 12/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA